ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis.

نویسندگان

  • Riichiro Yoshida
  • Tokunori Hobo
  • Kazuya Ichimura
  • Tsuyoshi Mizoguchi
  • Fuminori Takahashi
  • Jose Aronso
  • Joseph R Ecker
  • Kazuo Shinozaki
چکیده

Protein phosphorylation has pivotal roles in ABA and osmotic stress signaling in higher plants. Two protein phosphatase genes, ABI1 and ABI2, are known to regulate these signaling pathways in Arabidopsis: The identity of ABA-activated protein kinases required for the ABA signaling, however, remains to be elucidated. Here we demonstrate that two protein kinases, p44 and p42, were activated by ABA in Arabidopsis T87 cultured cells, and at least one protein kinase, p44, was activated not only by ABA but also by low humidity in Arabidopsis plants. Analysis of T-DNA knockout mutants and biochemical analysis using a specific antibody revealed that the p44 is encoded by a SnRK2-type protein kinase gene, SRK2E. The srk2e mutation resulted in a wilty phenotype mainly due to loss of stomatal closure in response to a rapid humidity decrease. ABA-inducible gene expression of rd22 and rd29B was suppressed in srk2e. These results show that SRK2E plays an important role in ABA signaling in response to water stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydrat...

متن کامل

GsAPK, an ABA-Activated and Calcium-Independent SnRK2-Type Kinase from G. soja, Mediates the Regulation of Plant Tolerance to Salinity and ABA Stress

Plant Snf1 (sucrose non-fermenting-1) related protein kinase (SnRK), a subfamily of serine/threonine kinases, has been implicated as a crucial upstream regulator of ABA and osmotic signaling as in many other signaling cascades. In this paper, we have isolated a novel plant specific ABA activated calcium independent protein kinase (GsAPK) from a highly salt tolerant plant, Glycine soja (50109), ...

متن کامل

Identification of features regulating OST1 kinase activity and OST1 function in guard cells.

The phytohormone abscisic acid (ABA) mediates drought responses in plants and, in particular, triggers stomatal closure. Snf1-related kinase 2 (SnRK2) proteins from several plant species have been implicated in ABA-signaling pathways. In Arabidopsis (Arabidopsis thaliana) guard cells, OPEN STOMATA 1 (OST1)/SRK2E/SnRK2-6 is a critical positive regulator of ABA signal transduction. A better under...

متن کامل

Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo.

Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 43 12  شماره 

صفحات  -

تاریخ انتشار 2002